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ABSTRACT
This review describes the unique opportunities and challenges for noninvasive optical mapping of human brain function. Diffuse optical
methods offer safe, portable, and radiation free alternatives to traditional technologies like positron emission tomography or functional
magnetic resonance imaging (fMRI). Recent developments in high-density diffuse optical tomography (HD-DOT) have demonstrated capa-
bilities for mapping human cortical brain function over an extended field of view with image quality approaching that of fMRI. In this
review, we cover fundamental principles of the diffusion of near infrared light in biological tissue. We discuss the challenges involved in
the HD-DOT system design and implementation that must be overcome to acquire the signal-to-noise necessary to measure and locate
brain function at the depth of the cortex. We discuss strategies for validation of the sensitivity, specificity, and reliability of HD-DOT
acquired maps of cortical brain function. We then provide a brief overview of some clinical applications of HD-DOT. Though diffuse optical
measurements of neurophysiology have existed for several decades, tremendous opportunity remains to advance optical imaging of brain
function to address a crucial niche in basic and clinical neuroscience: that of bedside and minimally constrained high fidelity imaging of brain
function.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5086809

I. INTRODUCTION: HEMODYNAMIC IMAGING
OF HUMAN BRAIN FUNCTION

Imaging spatially and temporally distributed brain activity has
revolutionized our understanding of the brain.1–4 The interacting
brain systems supporting our thoughts and actions—from sensing
the visual world, to communicating, to maintaining attention and
control, to daydreaming or sleeping—are accessible to quantita-
tive investigation through functional imaging techniques.4–6 Addi-
tionally, functional brain imaging has provided insight into neu-
rological and psychiatric disorders such as Alzheimer’s disease,7
autism spectrum disorder (ASD),8–10 and stroke.11,12 However, opti-
mizing neuroimaging technologies as tools for understanding these
disorders and tracking their progression presents significant chal-
lenges. Optical neuroimaging techniques offer a unique opportu-
nity for safe, wearable, and portable methods for measuring brain

function at the clinical bedside and in naturalistic settings. This
review will discuss recent advancements in high-density diffuse opti-
cal tomography (HD-DOT) methods that have led to improved
image quality and reliability in noninvasive optical mapping of
human brain function.

The diverse set of physiological dynamics encompassing neu-
rological processing engenders multiple opportunities for measure-
ments of human brain function across a remarkably wide range
of spatial and temporal scales (Fig. 1). When a part of the brain
is active, the local firing of neurons gives rise to varying electri-
cal field potentials that can be measured at the millisecond scale
invasively with electrocorticography (ECoG) or noninvasively with
electro/magneto encephalography (EEG/MEG). This local firing of
neurons triggers a complex neurovascular cascade13–15 that produces
a dramatic increase in glucose use and local blood flow resulting in
a large increase in oxygen availability.16,17 The dynamic changes in
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FIG. 1. Spatial, temporal, and mobility domains of the leading methods available
for measuring human brain function. Each colored region represents a rough esti-
mate of the spatial and temporal capabilities for each modality. EEG, fNIRS, and
DOT systems can be deployed at the bedside, in the laboratory, or in the hospi-
tal. MEG, fMRI, and PET machines require dedicated facilities, are immobile, and
patients/participants must be transported to the facilities for imaging. EEG, elec-
troencephalography; fNIRS, functional near infrared spectroscopy; DOT, Diffuse
Optical Tomography; MEG, magnetoencephalography; PET, positron emission
tomography; and fMRI, functional magnetic resonance imaging.

glucose metabolism and blood flow can be measured by positron
emission tomography (PET). The resulting relative changes in local
concentrations of oxygenated (HbO2), deoxygenated (HbR), and
total hemoglobin (HbT) give rise to a blood oxygenation level depen-
dent (BOLD) signal as measured by functional magnetic resonance
imaging (fMRI)18–23 and, differently, by functional near infrared
spectroscopy (fNIRS)24—the basis for HD-DOT. Each of these mea-
surement methods differs in their practical strengths and limitations
(Table I). For example, PET utilizes ionizing radiation that is gen-
erally prohibited for research use in children. The strong electro-
magnetic fields required for fMRI are unsafe for participants with
implanted active electronic devices (e.g., pacemakers, deep brain
stimulators, and cochlear implants). The wearable, portable nature
of optical technologies opens the door to bedside and minimally
constrained imaging of functional brain health,25–28 in settings more
ecologically natural than MRI.24,29–33 Given these strengths, fNIRS

technologies are uniquely suited to studies involving infants and tod-
dlers,25,34–39 and they are ideal for use in clinical settings in which
standards of clinical care lead to complex or untenable logistics for
moving the patient to an MRI machine (e.g., if the patient is on a
ventilator).

Though fNIRS methods are deployable at the bedside, anatom-
ical specificity is less precise and spatial resolution of the acquired
images is lower than what is obtainable with fMRI (Fig. 1). Each
single fNIRS measurement obtained from a given source-detector
(SD) measurement pair recovers information about the underly-
ing hemodynamics along a broad spatial path—including brain
and superficial tissues—traversed by photons traveling from the
source to the detector24 [Fig. 2(a)]. Acquiring data from multi-
ple SD measurement pairs provides access to more hemodynamics
even without utilizing imaging techniques [Fig. 2(b)].40–42 Diffuse
optical topography techniques can reconstruct sparse multichan-
nel fNIRS data into spatial maps with moderate spatial resolution
but no depth information43,230,231 [Fig. 2(c)]. To improve the image
quality of sparse fNIRS, spatially overlapping fNIRS measurements
can be tomographically reconstructed to produce three-dimensional
maps of brain function [Fig. 2(d)], a technique known as diffuse
optical tomography (DOT).31,44,57 To further improve image qual-
ity, HD-DOT systems use a dense regular array of sources and
detectors to obtain overlapping measurements at multiple distances.
Herein, high-density is defined as a regular array, typically an inter-
laced lattice of sources and detectors, with a closest (a.k.a., near-
est neighbor) SD distance of at most 15 mm45 [Fig. 2(e)]. This
maximum distance of 15 mm for the nearest neighbor SD sepa-
ration makes possible access to multiple SD distances, including
out to 40 mm and beyond, that together provide measurements
crucial for obtaining spatial maps of brain function comparable
to fMRI. Indeed, advances in image quality obtained with HD-
DOT, including a spatial resolution approaching that of fMRI,25,46

have been demonstrated in recovered maps of brain function using
both task-based25,33,45–59 and resting state functional connectivity
techniques.25,26,46,60

In this review, to contextualize challenges in HD-DOT system
design, we will briefly describe the physical mechanisms underly-
ing fNIRS measurements, and the theory underlying modeling of
light propagation in tissue. We will then focus on optical-electronic
instrumentation and cap design utilized in HD-DOT systems. We
additionally highlight several validation studies of HD-DOT map-
ping of cortical activity and connectivity in response to tasks and
during a resting state. We then discuss the use of HD-DOT in clini-
cally oriented applications. Finally, we will briefly consider opportu-
nities to further improve image quality, anatomical specificity, and
reliability so that HD-DOT methods can realize their true potential
in unconstrained and noninvasive assessment of human brain func-
tion in the clinic, in naturalistic and even remote settings, and in
sensitive populations.

II. OPTICAL IMAGING OF BRAIN FUNCTION:
THEORETICAL BACKGROUND
A. Photon diffusion through biological tissue

In Secs. II B–VI, we will discuss how, with a high density
array of sources and detectors and an appropriate model for light
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TABLE I. Comparison of functional neuroimaging techniques for applications in human subjects. HD-DOT, high density diffuse optical tomography; fNIRS, functional near infrared
spectroscopy; DCS, diffuse correlation spectroscopy; fMRI, functional magnetic resonance imaging; PET, positron emission tomography; EEG, electroencephalography; ECoG,
electrocorticography; MEG, magnetoencephalography. Boldface text highlights strong positive attributes while italicized text denotes negative attributes.

Contrast mechanism Hemodynamics Electromagnetic potentials

Measurement technique HD-DOT fNIRS DCS fMRI PET EEG ECoG MEG

Spatial resolution Med Low Low High Med Low High Med
Temporal resolution Med Med Med Med Low High High High
Field-of-view Med Med Low High High Med Med Med
Nonionizing Yes Yes Yes Yes No Yes Yes Yes
Free of contraindications Yes Yes Yes No No Yes Yes Yes
Noninvasive Yes Yes Yes Yes Yes Yes No Yes
Wearable Yes Yes Yes No No Yes Med No
Naturalistic environment Yes Yes Yes No No Yes No No
Portable Yes Yes Yes No No Yes No No
Motion sensitivity Med Med High High High High High High
Cost Med Med Med High High Med Med High

propagation, it is possible to accurately reconstruct brain function
within the tissue volume from a set of these measurements collected
on the surface (Fig. 3). The fundamental unit of an fNIRS mea-
surement is a paired source and detector of near-infrared (NIR)
light. In the late 1970’s, Jöbsis observed a range of wavelengths
(∼700–1300 nm) in the electromagnetic spectrum wherein pho-
tons penetrate multiple centimeters through biological tissue61 and
can provide direct measurements of hemodynamic physiology deep
(>1 cm) in living intact tissue. The deeper penetration occurs

within this “optical window” due to relatively weak absorbance of
photons by the primary chromophores in biological tissue (water,
lipids, and hemoglobin)62 (Fig. 4). Importantly, as will be discussed
below, though the photon absorption is low, the scattering of pho-
tons is high in biological tissue and can be well approximated as a
diffusive process.63–67 The local transient changes in local concen-
trations in HbO2, HbR, and HbT brought about by varying brain
activity are reflected in variance in the light levels of a given fNIRS
SD measurement pair. Sections II B–II E discuss how to localize the

FIG. 2. Image quality obtainable with fNIRS methods varies with the number and spatial overlap of the measurements. (a) A single source-detector pair measurement
illustrates the similar time course of oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) observed with fNIRS and that of the
blood oxygen dependent (BOLD) signal observed using fMRI. [Reproduced with permission from D. A. Boas, A. M. Dale, and M. A. Franceschini, NeuroImage 23(Suppl
1), S275–S288 (2004). Copyright 2004 Elsevier.] (b) Multichannel fNIRS utilizes measurements between several source-detector pairs to measure temporal hemodynamics
across an expanded field of view of the brain. [Reproduced with permission from Huppert et al., NeuroImage 29, 368–382 (2006). Copyright 2006 Elsevier.] (c) Diffuse
optical topography methods reconstruct multichannel fNIRS measurements into two-dimensional (2D) maps with a spatial resolution of 1–2 cm. [Reproduced with permission
from Yennu et al., Sci. Rep. 6, 30157 (2016). Copyright 2016 Springer Nature Publishing.] (d) Diffuse optical tomography (DOT) methods reconstruct spatially overlapping
multidistance source-detector measurement channels into three-dimensional (3D) maps with some level of depth profiling. [Reproduced with permission from Custo et al.,
NeuroImage 49, 561–567 (2010). Copyright 2010 Elsevier.] (e) High density DOT (HD-DOT) methods use a nearest source-detector spacing of at most 15 mm to reconstruct
3D maps that have been shown to approach a spatial resolution comparable to that of fMRI. [Reproduced with permission from Hassanpour et al., NeuroImage 117, 319–326
(2015). Copyright 2015 Elsevier.]
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FIG. 3. HD-DOT methods overview. (a) Data collection involves (i) locating source and detector positions on the head and (ii) recording light levels from the head of a
participant. In this example, a stimulus paradigm involves the participant generating novel verbs in response to nouns presented on a monitor. (b) A head model for a given
participant is created by (i) generating a subject-specific or atlas-based volumetric segmentation of the head tissue, (ii) building a high-density mesh, and (iii) placing the
sources and detectors on the head mesh surface. (c) Using the head model, the sensitivity profile for (i) each source (Gs), and (ii) each detector (Gd) are calculated and (iii)
combined into a sensitivity profile for each source-detector measurement pair ASD. (iv) The full system sensitivity ΣA can be visualized by summing the sensitivity of each
measurement pair. (v) The modeled sensitivity can then be spatially registered to an atlas space for group-level analyses. (d) Separately, the collected light-level data are
assessed for (i) noise and (ii) signal level quality, (iii) with high quality optical data clearly showing a pulse waveform. (e) After preprocessing, the optical data are combined
with a regularized inverse of the sensitivity model to generate (f) anatomically-registered maps of cerebral hemodynamics reflecting brain function. [Adapted with permission
from Eggebrecht et al., Nat. Photonics 8, 448–454 (2014). Copyright 2014 Springer Nature Publishing.]

changes within the volume from an HD set of measurements on the
surface.

B. Forward light modeling
In optical functional neuroimaging, the goal is to model how

variations in light level measurements on the surface correspond
to transient changes in optical properties within the volume. This
relationship can be concisely described by

y = Ax, (1)

where y is a vector of measurements from the set of source-detector
pairs (what we have), x represents the change in absorption and/or
scattering at each point in the volume (what we want to know), and
A is called the sensitivity matrix (also called the Jacobian) that relates
differential changes in light measurements to differential changes
in internal optical properties. This sensitivity matrix is constructed
from a model, termed the forward light model, derived fundamen-
tally from the Boltzmann Transport Equation (BTE), or, equiva-
lently in this context, the Radiative Transport Equation (RTE). The

BTE is a conservation equation that can be utilized to describe the
flow of light energy E through a scattering medium (e.g., a head).
This formalism is equivalent to a description of the flow of photons
as E = nhc

λ , where n is the number of photons, h is Planck’s constant, c
is the speed of light in a vacuum, and λ is the photon wavelength (see
Table II for a list of the primary quantities discussed in this review
with their units and typical values).

To construct the model, let us start by defining the energy radi-
ance I(⇀r , t, ŝ) (i.e., the energy flowing per unit time through an area
per solid angle, in units of W

cm2 sr )68 such that the differential energy
dE flowing in a unit solid angle d2 ŝ through an elemental area da
with associated normal n̂, at position ⇀r , in time dt is [Fig. 5(a)]

dE = I(⇀r , t, ŝ)ŝ ⋅ n̂da d2 ŝdt. (2)

Here, we are simplifying by considering energy at a specific wave-
length of light (e.g., λ = 850 nm) as opposed to a range of wave-
lengths, by assuming the scattering is elastic (Mie scattering domi-
nates in biological tissue69), and by neglecting polarization, coher-
ence, and nonlinearities. The radiance is proportional to the square
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FIG. 4. The optical window in biological tissue. (a) The absorption coefficient
of salt water, a primary component of biological tissue, is low within the visible
and near infrared (NIR) ranges of the electromagnetic spectrum (gray shading),
thereby allowing photons within this range to penetrate multiple centimeters in
tissue. The green line represents the frequencies of electromagnetic radiation typ-
ically used in functional MRI. (b) Utilizing multiple wavelengths within the visible
and near infrared range enables spectroscopic unmixing of oxygenated (HbO2)
and deoxygenated hemoglobin (HbR) chromophores due to their varying extinction
coefficients.

of the electric field at position ⇀r , traveling in direction ŝ in time dt.
The RTE states that in each infinitesimal element of the volume of
the medium [Fig. 5(a)],

1
v
∂I(⇀r , t, ŝ)

∂t
= µs ∫

4π
f (ŝ, ŝ′)I(⇀r , t, ŝ′)d2 ŝ′ + q(⇀r , t, ŝ)

− ŝ ⋅ ∇I(⇀r , t, ŝ) − (µa + µs)I(
⇀r , t, ŝ), (3)

where v is the speed of light in the medium (v = c
n ≈ 21.4 cm

ns ,
where n = 1.4 is the index of refraction in the medium); µs is the
scattering coefficient (in units of 1

cm ); f (ŝ, ŝ′) is the scattering phase
function, which is essentially the probability density of a photon
scattering from direction ŝ′ into direction ŝ; q(⇀r , t, ŝ) is a source

term (with units of W
cm3 sr ) representing power per volume emitted

by sources at position ⇀r in time dt in direction ŝ; and µa is the
absorption coefficient of the medium (in units of 1

cm ). Conceptually,
Eq. (3) states that the change in radiance (i.e., the change in optical
power through a differential area and unit solid angle) at time t in
direction ŝ at position ⇀r is due to four possible quantities: (i) gains
and losses in energy due to photons being scattered into direction
ŝ and position ⇀r , (ii) gains in energy due to local sources of pho-
tons, (iii) changes in net energy flow into the differential volume,
and (iv) losses in energy due to absorption and scattering, respec-
tively. The absorption and scattering coefficients of the medium
(e.g., scalp, skull, brain tissue, etc.) are wavelength dependent [µa(λ),
µs(λ), respectively] and correspond to the reciprocal of the mean dis-
tance traveled by a photon before it is absorbed or scattered, respec-
tively. More exactly, these coefficients represent the reciprocal of the
mean distance traveled before a photon is absorbed/scattered in the
absence of scattering/absorption. These distances are distinct from
(and much smaller than) the transport mean-free-path (a.k.a., the
random walk step) l = 1

µa+µ′s
, which represents the typical distance a

collection of photons travels in a given medium before their direc-
tions effectively become randomized and uniformly distributed (i.e.,
isotropic). The reduced scattering coefficient µ′s includes informa-
tion about the anisotropic scattering characteristic of the medium
and will be mathematically derived below. To simplify, here we are
treating the medium as if the index of refraction and the coeffi-
cients of absorption and scattering are constant throughout. We
will deal with spatially and temporally variant optical properties
below.

If we make the assumption that the radiance I(⇀r , t, ŝ) is nearly
isotropic to first order (i.e., uniform in all directions), then Eq. (3)
can be simplified by expanding I(⇀r , t, ŝ) into spherical harmonics
and truncating after the first term (this is also referred to as the P1
approximation)70–73,113

I(⇀r , t, ŝ) =
1

4π
Φ(

⇀r , t) +
3

4π
ŝ ⋅ J(⇀r , t), (4)

TABLE II. Constants and parameters for diffuse light transport.

Value/typical value
in biological tissue

Quantity Symbol Units for λ = 850 nm

Radiance I(r, t, s) W/(cm2
⋅sr) n/a

Planck’s constant h J⋅s 6.626 × 10−34

Speed of light in a vacuum c m/s 2.998 × 108

Index of refraction n Dimensionless 1.4
Speed of light in biological tissue v = c/n cm/ns 21.4
Absorption coefficient µa cm−1 0.2 (gray mattera)
Scattering coefficient µs cm−1 67 (gray mattera)
Anisotropy of scattering factor g Dimensionless 0.9
Reduced scattering coefficient µs

′ = (1 − g)µs cm−1 6.7
Transport mean free path L = 1/(µa + µs

′) cm 0.14
Fluence rate Φ(r, t) W/cm2 n/a
Photon diffusion coefficient D = v/3(µa + µs

′) cm2/ns 1.03

aReference 75.
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FIG. 5. Modeling photon diffusion through biological tissue. (a) Schematic detailing relevant quantities for the RTE. See the text for details. (b) In response to a brief (∼ps)
pulse of light deposited within an infinite homogeneous medium, the fluence rate behaves like a spherically decaying Gaussian in space and exponential in time. (c) The
fluence rate response to the pulse in (b) evaluated at five distances away from the pulse deposition. Each line corresponds to data taken from a horizontal section of
(b) and highlights the temporal broadening of the initial pulse. (d) In response to a ∼100 MHz intensity modulated light source on the surface of the head (black arrow),
measurements of both amplitude (A) and phase shift (∆θ) can inform estimates of underlying optical properties. (e) The Green’s function of a continuous wave source (GS)
on the surface (black arrow on left) and a detector (GD) some distance away (center arrow) are multiplied together at every location in space to derive the spatial distribution
of the source-detector measurement sensitivity (ASD right).

where Φ(
⇀r , t) is the fluence rate (a scalar intensity in units of W

cm2 ),
defined as the total power per area radiating radially outward from a
volume element at position ⇀r and time t

Φ(
⇀r , t) = ∫

4π
I(⇀r , t, ŝ)d2 ŝ, (5)

and J(⇀r , t) is the photon current flux (a vector intensity in units of
W

cm2 ), essentially the directed vector sum of the radiance emerging
from the volume element

J(⇀r , t) = ∫
4π
ŝI(⇀r , t, ŝ)d2 ŝ. (6)

Substituting Eq. (4) into Eq. (3) and integrating over all solid angles
(using the assumption of isotropic radiance) yields a scalar term,

1
v
∂Φ(

⇀r , t)
∂t

+∇ ⋅ J(⇀r , t) + µaΦ(
⇀r , t) = Q(

⇀r , t), (7)

and a vector term,

(
1
v
∂

∂t
+ µa + µs − gµs)J(

⇀r , t) = −
1
3
∇Φ(

⇀r , t) + ∫
4π
q(⇀r , t, ŝ)ŝd2 ŝ,

(8)

where Q(
⇀r , t) is the total power per volume radiating radially

isotropically outward from the volume element at position ⇀r and
time t (in units of W

cm3 ), and g is the ensemble average of the cosine of
the scattering angle associated with a typical scattering event in the
tissue [Fig. 5(a)]

g = ∫
4π
f (ŝ, ŝ′)ŝ ⋅ ŝ′d2 ŝ′ = ⟨cos θ⟩, (9)

where f (ŝ, ŝ′) is the scattering phase function which is the
(wavelength-dependent) angular distribution of photons scattered

from direction ŝ′ to direction ŝ, θ is the angle between the inci-
dent and outgoing scattering wave vectors. This anisotropy factor
g reflects the probability that a photon is scattered in the forward
direction and in soft mammalian tissue typically has a value around
0.9. Though a full discussion of measurement and derivation of
human tissue baseline optical properties is beyond the scope of this
review, this is a fascinating topic of ongoing study, especially with
regard to changes during early development (prenatal and postnatal)
and atrophy with aging and disease.47,74–88 The reduced scattering
coefficient can now be defined as µ′s = (1 − g) ⋅ µs and, as described
above, when combined with the absorption coefficient, is equal to
the inverse of the transport mean free path (the random walk step).
We can further simplify by assuming any sources are effectively
isotropic

∫
4π
q(⇀r , t, ŝ)ŝd2 ŝ = 0. (10)

If we now enforce a second key assumption (2) that variations in the
photon current are slow relative to the time it takes the photons to
travel a random walk step

∣
∂J
∂t

∣ ≪ v(µa + µ′s)∣J∣, (11)

then Eq. (8) simplifies to a form similar to Fick’s law of diffusion

J(⇀r , t) = −
1

3(µa + µ′s)
∇Φ(

⇀r , t). (12)

The constant of proportionality in Eq. (12), equal to one third of
the transport mean free path, has units of length, whereas in Fick’s
first law of diffusion, the constant of proportionality—the diffu-
sion coefficient—has units of area per time. To maintain conceptual
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simplicity, we can define the photon diffusion coefficient (in units
of cm2

s ) as

D(
⇀r) =

v(⇀r)
3(µa(

⇀r) + µ′s(
⇀r))

, (13)

where we are now explicitly noting that the index of refraction and
the coefficient of absorption and reduced coefficient of scattering
may vary in the tissue. Using this definition, we then substitute
Eq. (12) into Eq. (7) to arrive at the diffusion approximation of the
radiative transport equation for the photon fluence rate

∂Φ(
⇀r , t)

∂t
−∇ ⋅ (D(

⇀r)∇Φ(
⇀r , t)) + vµa(

⇀

r)Φ(
⇀r , t) = vQ(

⇀r , t).

(14)

In some cases, we can further simplify by assuming that the opti-
cal properties within the medium are spatially homogeneous. The
diffusion equation in (14) then becomes

∂Φ(
⇀r , t)

∂t
−D∇2Φ(

⇀r , t) + vµaΦ(
⇀r , t) = vQ(

⇀r , t). (15)

Equation (15) states that the temporal changes in the fluence rate are
related to divergence due to diffusion (i.e., scattering), gains due to
sources, and losses due to absorption. In practice, we often model
the head using multiple tissue types (i.e., scalp/soft tissue, bone, gray
matter, white matter, and cerebral spinal fluid), each with some set
of estimated baseline optical properties.

To recap, the validity of the diffusion approximation for pho-
ton propagation in biological tissue is appropriate as long as (1) the
radiance can be considered isotropic, which will generally be true in
regions deeper than a mean free path, l = 1

µa+µ′s
≈ 1.4 mm; (2) the

time scale of variations in fluence are much greater than the time
it takes a photon to travel a mean free path tl = 1

v(µa+µ′s) ≈ 7 ps
[Eq. (11)]; (3) the tissue properties are in the strong scattering regime
(µ′s ≫ µa, or, more concretely, µ′s > 10µa); and (4) the source term
Q(

⇀r , t) is isotropic.89 In the application of focus here, i.e., optical
imaging of human brain function, these assumptions generally hold
true at the depths of brain tissue. Though these assumptions break
down in transparent or “void” regions of the head (e.g., within cere-
bral spinal fluid, CSF),90,91 the surface roughness of the boundaries
between the CSF and surrounding layers enables these regions to
be modeled using the diffusion approximation with effective optical
properties to recover accurate reconstructions.47,75,82,92

The specific characteristics of the fluence rate response in
Eq. (15) depend on the source term Q(

⇀r , t). Broadly, source terms
utilized in human optical functional neuroimaging fall into three
regimes: picosecond to nanosecond pulses (∼1 THz–1 GHz), inten-
sity modulated light with frequencies in the ∼100 MHz–1 GHz
range, and constant sources (essentially modulation below ∼1 MHz).
The measurement types corresponding to these source modula-
tion strategies are time domain (TD), frequency domain (FD), and
continuous wave (CW), respectively. For the TD case, it can be
shown66,93 that for a source term defined as a short isotropic pulse
Q(r, t) = δ(0, 0) in an infinite and homogeneous medium, the
solution to Eq. (15) becomes

Φ(r, t) =
vQ0

(4πDt)
3/2

e[−
r2

4Dt −vµat]. (16)

This equation states that the distribution of the fluence rate around
a point source is a spherically decaying Gaussian in space and expo-
nential in time at large r [Figs. 5(b) and 5(c)]. The absorption relax-
ation time constant of this equation, τ = 1

vµa
≈ 0.24 ns (correspond-

ing to ∼4 GHz) for λ = 850 nm in gray matter tissue highlights the
very short time scales required to adequately sample this fall-off dis-
tribution [Fig. 5(c)], also called the distribution of times of flight
(DTOF) or the temporal point spread function (TPSF). TD systems
use picosecond wide pulses of light sources and ultrafast optoelec-
tronics to measure this temporal broadening of the detected light
at some distance or set of distances from the source. The measured
DTOF can then be fit to the expected distribution [Fig. 5(c)] to esti-
mate underlying absorption and scattering properties of the tissue.
As TD methods have yet to be fully realized in an HD-DOT array, a
full discussion of TD methods and the exciting and rapidly advanc-
ing optoelectronics that enable these measurements94–109 are beyond
the scope of this review.

For the case of intensity modulated light, the source term is
written in the general form,110–112

Q(
⇀r , t) = QDC(

⇀r) + QAC(
⇀r)e−iωt , (17)

with both a DC and an AC component [Fig. 5(d)] where ω = 2πf
is the angular frequency of the intensity modulation. In this case,
Eq. (15) can be written in a simpler form by taking the Fourier trans-
form of each term to get the frequency domain photon diffusion
equation into the general form of the inhomogeneous Helmholtz
equation

(∇
2 + κ2

)Φ(
⇀r ,ω) = −

v
D
Q(

⇀r ,ω), (18)

where κ2
=

−vµa+iω
D . The solution to this equation in an infinite

homogeneous medium with a modulated point source at the origin
is given by the following overdamped solution to the wave equation,

Φ(r,ω) =
vQ(ω)

4πD
e−kRerei(ωt−kImr)

r
, (19)

where r is the distance from the modulated source and the wave
vectors kRe and kIm are defined such that72,110–112

kRe = [
vµa
2D

]

1/2
⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝
1 + [

ω
vµa

]

2
⎞

⎠

1/2

+ 1
⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

, (20)

kIm = [
vµa
2D

]

1/2
⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝
1 + [

ω
vµa

]

2
⎞

⎠

1/2

− 1
⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

. (21)

Writing the wave vectors in this way highlights the length scale
determined by the leading term of both wave vectors, [

vµa
2D ]

1/ 2

≈ 1.4 cm−1 (assuming optical properties for gray matter and 850 nm
photons as above). For modulation frequencies of f = 100 MHz and
1 GHz, the spatial attenuation lengths are 1

kRe
≈ 0.5 cm and 0.4 cm,

and the diffuse photon density wave (DPDW)63,113,114 wavelengths
are 2π

kIm
≈ 42 cm and 4.9 cm [Fig. 5(d)]. For lower modulation fre-

quencies where ω ≪ vµa → f ≪ 680 MHz (effectively, well below
100 MHz), the DPDW wavelength is so long that the phase differ-
ence∆θ(r,ω) = kImr measured at a detector some distance away from
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the source is too small to reliably measure. At very high modulation
frequencies where ω ≫ vµa, the phase becomes insensitive to the
underlying optical properties; in fact, Eq. (11) can now be rewritten
as ω≪ v2

3D → f ≪ 25 GHz to provide an upper limit for modulation
frequencies applicable to the diffusion approximation of the RTE.

Comparing the responses to a pulse [Eq. (16)] with the Fourier
equivalent in the frequency domain [Eqs. (19)–(21)], we see that
while the fluence rate of intensity modulated light propagates with
a constant phase velocity Vph =

ω
kIm

, the response to a pulse under-
goes dispersion (pulse broadening in the time domain) due to the
different phase velocity of each frequency component in the pulse
[Figs. 5(c) and 5(d)]. Due to the significant cost of optoelectronics
that maintain high fidelity in source modulation and photon detec-
tion at the required bandwidths for precise measurement of both
light intensity and phase delay for FD methods, this strategy has yet
to be implemented in HD-DOT arrays that require a high channel
count of source-detector channels.

The CW regime can be modeled as the FD case with a modu-
lation frequency of zero. This simplifies Eq. (18) to give the steady
state diffusion equation

(∇
2
−
vµa
D

)Φ(
⇀r) = −

v
D
Q(

⇀r), (22)

which leads to the solution for the fluence rate in an infinite and
homogeneous media

Φ(r) =
vQ0

4πD
e−r[

vµa
D ]1/2

r
. (23)

In CW mode, only the magnitude of the light intensity is mea-
sured at the detector. In this case, because only one parameter is
measured, relative changes in absorption in the modeled optical
properties are all that can be accessed. By contrast, TD and FD sys-
tems, which measure the DTOF and both light intensity and phase
relative to the source signal, respectively, provide access to rela-
tive (and, potentially, absolute) measures of absorption as well as
scattering within the tissue. However, the current technology that
supports these measurements is significantly more expensive and
complex and has yet to be fully realized in an HD-DOT configu-
ration.101,115–124 Therefore, Secs. II C–II E will focus primarily on the
CW case.

C. Perturbation methods: The Born
and Rytov approximations

The solutions [Eqs. (16), (19), and (23)] to the diffusion approx-
imation of the RTE [Eqs. (15), (18), and (22)] describe how pho-
tons propagate through turbid media given a constant background
of steady-state optical properties. To address the goal of measur-
ing changes in brain function within the volume (as manifested
through changes in optical properties x) via changes in the light sig-
nals y measured at the surface [as formalized as y = Ax in Eq. (1)],
we must see how these solutions are altered given a small per-
turbation in optical properties. These perturbations are modeled
as spatially varying deviations from their baseline values: µa(

⇀r)
= µ0

a(
⇀r) + δµa(

⇀r), and D(
⇀r) = D0

(
⇀r) + δD(

⇀r), which are assumed
to be small: δµa(

⇀r) ≪ µa(
⇀r) and δD(

⇀r) ≪ D(
⇀r), respectively. The

resulting perturbations in fluence rate can be modeled using a sim-
ple linear expansion, also called the Born approximation, Φ(

⇀r ,⇀r s)
= Φ0(

⇀r ,⇀r s)+δΦ(
⇀r ,⇀r s), where δΦ(

⇀r ,⇀r s) ≪ Φ(
⇀r ,⇀r s).73,118 However,

it has been shown that an exponential expansion in the fluence rate
performs far better in practice and presents a much less ill-posed
inverse problem, especially in cases of imaging deep perturbations
(greater than ∼5 mm from the boundary)73,118,125

Φ(
⇀r ,⇀r s) = e[Φ

0(⇀r ,⇀r s)+δΦ(⇀r ,⇀r s)] = eΦ
0(⇀r ,⇀r s)eδΦ(

⇀r ,⇀r s)

= Φ0(
⇀r ,⇀r s)eδΦ(

⇀r ,⇀r s), (24)

where the ⇀r s term denotes that these scattered fields are due to a
spatially localized source, and δΦ(

⇀r ,⇀r s) ≪ Φ0(
⇀r ,⇀r s), which then

leads to a simple relationship for the perturbed fluence rate

δΦ = ln(
Φ
Φ0

). (25)

This exponential expansion is referred to as the Rytov approxima-
tion. Experimentally, the Rytov approximation provides a means of
normalizing such that small errors in assumed background optical
properties divide out, thereby providing a more robust approach to
imaging than the Born approximation.73,118 For the general case of
a complex fluence rate, Φ = Aeiθ, the Rytov approximation provides
a relationship for the perturbed fluence rate that automatically sep-
arates attenuation in light amplitude from phase shifts between the
incident Φ0 = A0eiθ0 and measured Φ = Aeiθ signals

ln(
Φ
Φ0

) = ln(
Aeiθ

A0eiθ0
) = ln(

A
A0

) + i(θ − θ0). (26)

Again, we see that the CW case is simply a special case of the FD case
(i.e., there is no phase term to consider). The baseline fluence rate
Φ0(

⇀r ,⇀r s) is assumed to arise from some baseline spatial distribution
of optical properties µ0

a(
⇀r) and D0

(
⇀r) within the volume [Fig. 3(b)].

When imaging functional brain activity, the baseline fluence rate
for a given source-detector measurement pair is typically estimated
using the temporal mean of the time course of that measurement
during an experiment [i.e., Φ0(

⇀rd,⇀r s) = Φ0,sd = ⟨Φsd(t)⟩]. Alterna-
tively, the baseline can be estimated from a time period immediately
preceding an experimental induction of a perturbation via some task
(e.g., a Valsalva maneuver).

D. Numerical methods
The above solutions to the diffusion approximation of the RTE

are all analytically derived given the infinite model and homoge-
neous optical properties. For calculating solutions to the diffusion
equation for tissues with an arbitrary and complex geometry (i.e.,
a head) and spatially varying optical properties (index of refrac-
tion, absorption, and scattering coefficients), a number of publicly
available packages such as NIRFAST126 or TOAST++127 are avail-
able. These packages utilize powerful, flexible, and fast finite element
modeling (FEM) routines.128–130 Alternatively, Monte Carlo meth-
ods can be employed.131–134 A strength of Monte Carlo methods is
that they do not rely on assumptions of isotropic radiance or slow
changes in photon currents. Additionally, Monte Carlo methods
provide solutions with greater accuracy within the top millimeter
surface of the tissue—where the assumptions required for the diffu-
sion approximation break down and can lead to numerical errors.
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However, Monte Carlo methods are comparatively slow relative to
FEM methods that rely on the diffusion approximation. At the depth
of the human brain the diffusion approximation works quite well
and is computationally far more efficient, allowing for solutions to
be obtained for thousands of source-detector measurement pairs in
a complex head geometry in just a few minutes.55,135

The solutions to these problems can be derived using the meth-
ods of Green’s functions whereG(

⇀r s,
⇀r) and G(

⇀r ,⇀rd) are the Green’s
functions for the sources and detectors located at positions ⇀r s and ⇀rd,
respectively [Figs. 3(c) and 5(e)]. The Green’s function represents
the spatial sensitivity of a given source or detector. Importantly,
though the exact functional form of a Green’s function depends
upon the geometry of the problem, the Green’s function for a source
or a detector are of the same functional form, as derivable from
the reciprocity theorem of electromagnetic radiation.136 This fact
directly gives rise to the adjoint formulation of the sensitivity rela-
tions.73 Reciprocity essentially states that transmitters and receivers
of electromagnetic radiation can be equivalently modeled. Thus,
G(

⇀r s,
⇀r) and G(

⇀r ,⇀rd) provide a measure of some “effect” at voxel
⇀r in the tissue due to a source at position ⇀r s or an “adjoint source” at
position ⇀rd [Fig. 5(e)].

Solving the simpler CW case [Eq. (22)] using the Rytov approx-
imation with Green’s function methods, neglecting terms beyond
the first order, and relating to changes in detected intensity at the
surface y (also referred to changes in optical density) leads to the
following solution:

y(λ) = − ln(
Φ
Φ0

) = −
v
D ∫

G(
⇀r s,

⇀r , λ) ⋅G(
⇀r ,⇀rd, λ)

G(
⇀r s,

⇀rd, λ)
∆µa(r)d

⇀r .

(27)

This equation states that ratiometric (i.e., differential) measurements
of fluence at the boundary are related to the spatial distribution of
internal changes in absorption multiplied by the spatial wavelength-
dependent sensitivity distributions for the source and detector and
summed over all points in the tissue. The normalization term within
the integral (sometimes referred to as Gsd) is the Green’s function of
the source evaluated at the position of the detector. Here, y is a vector
with each element corresponding to a specific source-detector pair at
a given wavelength.

The next step is to discretize Eq. (27) for some finite set of Nm
source-detector pair measurements over a set of Nv voxels or nodes
within a finite element mesh [Fig. 3(b)]. Using small-volume vox-
els (tetrahedral elements for the mesh) will facilitate more accurate
solutions but will also add to the computational time required.135

While it is true that DOT is a relatively low-resolution imaging
modality, it is important that the forward model be accurate enough
that image quality of the data is not compromised due to dis-
cretization errors in the model.46,55,135 To achieve fMRI-comparable
image quality, it is recommended that the tetrahedral elements
have a volume of ∼1–1.5 mm3 each (which typically requires
800 000–1 000 000 nodes total in a head mesh).46,47 Equation (27)
can be rewritten as

y(λ) = −
vV
D ∑

Nv

j
G(

⇀r s,
⇀r j, λ) ⋅G(

⇀r j,
⇀rd, λ)

G(
⇀r s,

⇀rd, λ)
∆µa(rj), (28)

where V is the volume of the discretization element. This equation
can be rewritten in a format where y(t) = − ln(Φ(t)Φ0

) is the vector of

optical density changes for each of the source-detector measurement
pairs (each as a function of time), A is the sensitivity matrix derived
from the full light model, and x = ∆µa(rj, t) is a vector representing
the change in absorption in each voxel (also a function of time)

y(t) = Ax(t). (29)

For simplicity, it is assumed here that the sensitivity is itself not a
function of time. In practice, the measurements, the absorbance, and
the sensitivity matrix are each a function of the wavelength of light
emanating from the sources.

In the FD case, as shown in Eq. (26), the Rytov approxima-
tion naturally separates the amplitude and phase components of
the measurements (written here as vectors to account for mul-
tiple sources, detectors, wavelengths, and modulation frequen-
cies) into real and imaginary components of y(λ,ω) = − ln( Φ

Φ0
)

= [
YRe
YIm

] = [
YA(λ,ω)
Yθ(λ,ω)], where YA(λ,ω) = ln( A

A0
) and Yθ(λ, ω)

= θ − θ0. Similarly, the perturbations in optical properties are

separable x = [
∆µa(r)
∆D(r)]. The full FD sensitivity matrix contains

four separable components corresponding to the real and imagi-
nary components of sensitivity of measurements at the surface to
internal changes within the volume of absorption and scattering

A = [
Re(W∆µa) Re(W∆D)

Im(W∆µa) Im(W∆D)
], where the complex sensitivity rela-

tions for a given source-detector pair measurement in relation to
absorption ∆µa and scattering ∆D are given by125,137,138

W∆µa(λ,ω) = −
vV
D

G(
⇀r s,

⇀r , λ,ω) ⋅G(
⇀r ,⇀rd, λ,ω)

G(
⇀r s,

⇀rd, λ,ω)
, (30)

W∆D(λ,ω) =
vV
D
∇G(

⇀r s,
⇀r , λ,ω) ⋅ ∇G(

⇀r ,⇀rd, λ,ω)
G(

⇀r s,
⇀rd, λ,ω)

. (31)

The FD measurements and Green’s functions all depend on both the
wavelength λ and modulation frequency ω of the incident light.

To calculate the light model A, many labs use NIRFAST126

to model the Green’s functions [Figs. 3(c), 5(d), and 5(e)], which
are primarily dependent upon three things: (1) the tissue bound-
ary shape, (2) the internal distribution of baseline optical properties,
and (3) the locations of the sources and detectors on the surface
[Fig. 3(b)], as well as the wavelength and (in the FD case) the modu-
lation frequency. The tissue shape and optical property distributions
are ideally generated from a subject-specific segmentation of the
head,47,139,140 though atlas-based models can work quite well when
subject-specific anatomy is not available.44,52,87

E. Image reconstruction
As described above, the sensitivity matrix relates relative ratio-

metric changes in light-level measurements taken at the surface
to relative changes in absorption within the volume. The sensitiv-
ity matrix can be directly inverted for image reconstruction using
Tikhonov regularization along with spatially variant regularization
to minimize the objective function [Fig. 3(e)]

min{∥ymeas − Ax∥2
2 + λ1∥Lx∥2

2}. (32)
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The penalty term for image variance, λ1∥Lx∥2
2, incorporates a spa-

tially variant regularization term λ2 where45,143

diag(L) = 2
√

[diag(ATA) + λ2]. (33)

The specific values of these parameters will directly influence the
DOT imaging domain characteristics [as visualized in Fig. 3(c–iv)]
and should be considered aspects of the system design along with the
hardware. A solution,

x = A#
λ1λ2ymeas, (34)

can thus be directly obtained using a Moore-Penrose generalized
inverse with

A#
λ1λ2 = L−1

(ÃTÃ + λ1I)−1ÃTymeas, (35)

where,
Ã = ÃL−1. (36)

The optimal values of regularization parameters λ1 and λ2
depend upon the source-detector grid geometry, the underlying
noise characteristics of the imaging system, and the geometry of
the anatomical model. The Tikhonov regularization term λ1 tunes
the balance between amplifying high spatial frequency information
(including noise) at small values (typically below 0.01, though the
exact number depends on the number of measurements in the imag-
ing system) and strongly weighting low-spatial-frequency modes
which effectively spatially smooth the image domain at large val-
ues.141 The spatially variant regularization term λ2 has been shown
to improve localization error and to provide a more uniform res-
olution and contrast within the imaging domain and thereby an
improvement in image quality of DOT reconstructions.117,142–145 As
the sensitivity of HD-DOT drops off with depth from the surface
[Figs. 3(c), 5(b)–5(e)], spatially variant regularization provides a way
to tune the reconstruction to an appropriate depth; too small of a
λ2 will push the reconstruction too deep below the surface and too
large a value will pull the reconstruction too shallow. Optimal set-
tings for these parameters are found through simulation and empir-
ical studies to provide uniform imaging across the field of view as
judged by evaluating point spread functions (in simulation) and,
ideally, subject-matched comparisons to an alternate modality, such
as functional MRI. An estimate of the spatial extent of the imaging
domain can be found by calculating and visualizing a flat field recon-
struction. This done by generating a test image ∂x of a global unit
change in absorption throughout the imaging volume (the ‘flat field’
perturbation) to generate simulated data ysim via

ysim = A∂x. (37)

The flat field reconstruction of the imaging domain xff is then found
as in Eq. (34)

xff = A#
λ1λ2ysim. (38)

The spatial profile of this flat field reconstruction provides a visual
readout of the smoothness and extent of the imaging domain
throughout the volume. Where the flat field lies below 1%–10%
informs where should not be considered valid in volumetric recon-
structions.33,46,55,126,146

Relative changes in hemoglobin concentrations ∆C can then be
obtained from the absorption coefficients used in spectral decompo-
sition

∆C = E−1∆µa, (39)

where E is a matrix containing the extinction coefficients of HbR
and HbO2, and ∆C = [∆[HbO2], ∆[HbR]] is the matrix of concentra-
tion changes by time.

III. HIGH-DENSITY DIFFUSE OPTICAL TOMOGRAPHY
SYSTEM DESIGN

Accurate reconstruction of relative changes in hemodynamics
fundamentally depends upon obtaining high fidelity signal quality
of light levels from multiple overlapping measurements that are sep-
arated by multiple distances (Fig. 6). This key requirement directly
leads to challenges in the optoelectronics and challenges in main-
taining good optical coupling throughout the system—from the
source to the scalp and from the scalp to the detector. The large
number of independent source-detector measurements also presents
significant challenges in real-time data quality assurance. Each of
these sets of challenges will be discussed below.

A. Challenges in optoelectric designs
Source-detector measurement pairs at multiple separations

provide additional depth information, and the overlapping mea-
surements at a given separation support improved lateral resolu-
tion.45,147–149 For example, the array shown in Fig. 6(a) [equivalent
to a subset of that in Fig. 3(a)] utilizes measurements separated by
distances of 1.3, 3.0, 3.9, 4.7, and 5.1 cm for the first five nearest
neighbor separations, which leads directly to significant challenges
in obtaining an adequate dynamic range of response for each detec-
tor while minimizing crosstalk between detection channels. Maxi-
mizing the dynamic range while minimizing crosstalk involves mul-
tiple system design considerations: the light budget, the detection
and amplification strategy, and encoding/decoding strategies.

1. The light budget
The source type, be they light emitting diodes (LEDs) or laser

diodes (LDs), will significantly impact system design. First, the
choice of wavelengths for the sources may be motivated by spectral
width considerations, as LEDs emit photons over a relatively broad
band around their characteristic center wavelength relative to LDs.
Additionally, though LDs can be modulated faster than LEDs, LDs
are typically not available at as many wavelengths as LEDs. The opti-
mal choice of wavelengths, and optical bandwidths of sources will
depend on the required spectroscopy for the specific goals of the
application,24,150–152 be it imaging hemoglobin, cytochrome c oxi-
dase,153–156 or other functional chromophores. Each source position
of the system highlighted in Fig. 3 uses LEDs emitting 750 nm and
850 nm photons with an optical power at the head of 3.2 ± 0.3
mW and 4.3 ± 0.3 mW for each LED.46 Other systems have used
different wavelength combinations including 760 and 830 nm (the
DYNOT 232 optical tomography imager of NIRx59), 690 and 830 nm
(the ISS Imagent™157 and the CW4 TechEn, Inc. system44), 660, 780
and 850,158 and even a larger set of wavelengths including 778, 808,
814, 841, 847, 879, 888, and 898 nm.159,160 The system in Figure 3
used three 750 nm LEDs per channel to compensate for the strong
attenuation in biological tissue at that wavelength. Though one can
increase the intensity of the source, the American National Stan-
dards Institute (ANSI) limits the amount of NIR light deposited on
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FIG. 6. A high density grid design presents multiple electronic and mechanical challenges. (a) The high density grid provides overlapping measurements at multiple source-
detector distances, thereby supporting many times more optical measurements per surface area of the head than a sparse array. Colored thick lines denote associated
source-detector distances as marked in part b. The high density array shown here supports source-detector distances of 1.3 (blue), 3.0 (green), 3.9 (yellow), 4.7 (orange),
and 5.1 (red) cm. (b) To accurately detect light from sources at multiple distances, the detectors must have a linear response over many orders of magnitude, a low noise
floor, and low crosstalk. (c) Discrete avalanche photo diode (APD) detection channels provide adequate dynamic range for the demands of the HD-DOT system. (d) Time
encoding strategies minimize crosstalk between detection channels. (e) Frequency and region encoding strategies provide additional tools for minimizing crosstalk while
allowing for time-efficient sampling of physiological dynamics. (f) The density of source and detector fibers (or optical elements) at the scalp lead to significant challenges in
maintaining optical coupling. Successful imaging cap designs often use semi-rigid thermal plastic to maintain a regular grid along with flexible spring-like action on the fibers
to facilitate combining through the hair. [Adapted with permission from Eggebrecht et al., Nat. Photonics 8, 448–454 (2014). Copyright 2014 Springer Nature Publishing.]

human tissue at a maximum intensity of 4 mW/cm2 at these wave-
lengths. This specification of source intensity at the scalp sets an
upper limit on the light signal intensity to be collected from the head
some distance away.

The moment light leaves the source, losses occur due to poor
coupling between the LED/LD and the fiber optic, loss along the
fiber optic (if the fiber is made with a lossy material like plastic or
if the fiber has been broken), and poor coupling at the scalp. Cou-
pling between the source and a fiber optic depends on not just the
optical alignment, but also the etendue of both the source and the
fiber. The etendue of an optical element is equal to the area of emis-
sion (or collection) times the solid angle of emitted (or collected)
light. When comparing coupling designs, and when the optics are
axially symmetric, the solid angle can be roughly approximated by
the square of the numerical aperture (NA) of the fiber optics. Also
important with fiber optics is whether or not the fiber is a single-core
fiber or a fiber bundle. Larger fibers provide easier optical coupling,
however, they are stiffer than smaller fibers that can be challenging
to align reliably. Fiber bundles that pack many small optical fibers
into a single larger conduit provide a reasonable middle ground for
many designs. Because the individual glass fibers are smaller, fiber
bundles tend to be more forgiving to breaking (i.e., smaller fibers
have a smaller critical bend radius). However, the price one pays
for using a fiber bundle is found in the packing fraction: one can
expect to lose a significant fraction of the light impingent on the

fiber (typically up to 50%) because there are gaps in between the
small glass fibers that will not transmit the light. Similar concerns
are present on the return path of the photons into the detector.
Exciting new advances in on-the-head optoelectronic components
remove the fibers from the design, which simplifies some system
design considerations.159,160 However, challenges remain in reliable
maintenance of power consumption, data streaming fidelity, and
participant comfort.

2. Detection and amplification
Over the NIR wavelength range, light levels at source-detector

distances from 1-5 cm vary over at least six orders of magnitude
in optical power [Figs. 6(a) and 6(b)]. To ensure a linear output
over such a range of optical power inputs, many HD-DOT systems
use avalanche photodiodes (APD) that can be sourced from various
distributors including, e.g., Hamamatsu.25,45,46 The APD design is
generally preferred over a photon multiplier tube (PMT) design due
to the strong demands on dynamic range, though some systems suc-
cessfully implement PMTs.157 The APDs provide a dynamic range of
up to >107 [Fig. 6(c)], which allows for a signal to noise level (SNR)
> 100 over 4–5 orders of magnitude in light level.46 This high level
of SNR is crucial because changes in hemodynamic-measured brain
function due to task activations is of order a few percent and variance
in the resting state is of order 1% or less.47,161,162
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In addition to dynamic range, additional key specifications
when optimizing the detection strategy include the sensitivity, noise
equivalent power (NEP), and crosstalk. The sensitivity, the ratio of
output voltage for a given input optical power, should typically be
at least 1 × 106 V/W. The NEP, the optical input-referred power
of the noise floor output of a detector, should be as small as pos-
sible (e.g., less than 20 fW/

√
Hz). Crosstalk is a measure of how

much interference a signal in one source-detector channel has on a
separate source-detector channel. Constraints on the levels of allow-
able crosstalk are driven by the requirements in dynamic range:
to ensure data is uncorrupted over a dynamic range of 120 dB,
the crosstalk must be kept below −120 dB. Electronic crosstalk
between detection channels can occur through common power sup-
plies or within a multichannel analog to digital converter (ADC).
To maintain these specifications, systems typically use avalanche
photodiodes coupled into 24-bit dedicated ADCs.27,45,46 Many com-
panies provide commercially available high fidelity ADCs including
MOTU, RME, and Focusrite. Additional strategies for increasing
the effective dynamic range can be employed that use dynamic gain
adjustments before the signal reaches the ADC. These strategies can
be complex and can lead to poor crosstalk performance compared to
the strategies described above.57,163,164

3. Encoding/decoding
To maintain low crosstalk between source-detector measure-

ment channels, also requires encoding and decoding strategies. Time
encoding [Fig. 6(d)] along with frequency and spatial encoding
[Fig. 6(e)] may be employed.46 In time encoding, only the source
light at a given position is turned on at a given time, here called
a time step. This minimizes potential crosstalk between different
source-detector pair measurement channels because it is straight
forward to assign the signal for every detector to the exact source
that is on. However, this strategy can be slow and lead to under sam-
pling physiology if there is a larger number of sources to encode.
To obtain a faster frame rate (i.e., the time is takes to sample the
entire field of view), frequency encoding may be employed whereby
multiple sources are modulated at the same time, but at different fre-
quencies [Fig. 6(e)]. Then the signal for a given source-detector pair
is obtained via a Fourier decomposition of a given detector’s data
within a time step where the magnitude of the signal from a source
is proportional to the magnitude at its modulation frequency. With
frequency encoding multiple sources can be on at once as long as the
Fourier peaks are far enough apart that they do not overlap, other-
wise crosstalk between those respective channels will go up signifi-
cantly. Additionally, with multiple sources on, broad band shot noise
will contaminate the Fourier spectrum [see raised noise floor in trace
with peaks in Fig. 6(e)]. A higher level of overall light will effectively
lower the dynamic range for the source-detector measurements. One
can also spatially encode the sources such that spatially separated
sources on the HD array are on at the same time. One must be care-
ful that the shot noise from very bright sources is not swamping out
the desired light from more distant sources in a given encoding strat-
egy. The system highlighted in Fig. 3 uses a combination of time,
frequency, and spatial encoding.45,47 With each of these encoding
strategies, it is important to note that background light levels from
the room or immediate imaging environment may lead to signifi-
cant crosstalk and a loss of dynamic range. The Fourier decomposi-
tion strategy of decoding provides a robust strategy to minimize the

effects of background light level. These strategies should be imple-
mented with care for the desired frame rate: sampling too slowly
can lead to aliasing of physiology variance into the data stream.
A minimal frame rate of 3 Hz (optimal if 10 Hz or faster) is rec-
ommended to allow for adequate sampling of systemic physiology
which includes both respiration (generally around 0.3 Hz) and pulse
(generally around 1 Hz for a quietly resting healthy adult).

B. Challenges in optode-scalp coupling
and cap design

Beyond challenges in optical and electrical components, reli-
able and consistent coupling of the optical elements to the scalp
of the participant presents multiple significant challenges. Sources
and detectors may be placed directly on the head165 or coupled via
optical fibers.45,166,230,231 A general principle in ensuring reliable and
comfortable imaging arrays is to provide a lightweight but rigid
structure that maintains the optical fiber positions while minimiz-
ing torque on the fibers that can lead to coupling inconsistency over
the course of an imaging session. For example, several adult DOT
systems have used a rigid outer shell to manage fibers and bear fiber
weight [Figs. 6(f) and 7]. Other DOT systems image the participants
(mostly infants in the current literature) in the supine position so
that the bed bears the weight of the fibers [Fig. 7(d)]. A combination
of foam and elastic pieces can help maintain a force perpendicular
to the head surface to hold the optodes directly coupled against the
scalp while allowing for moderate translation normal to the head
such that the imaging cap can conform to local variations in head
shape [Fig. 6(f) used in cap design Fig. 7(b)].26,46 Alternatively, a
spring loaded fiber tip can couple fibers to the scalp.59 Further-
more, rigid outer structures aid in fiber management and suspend
the weight of the fibers.158 Recent work has designed more wear-
able caps with lightweight fibers.167 Finally, recent developments in
wireless systems have minimized the need for fiber management and
weight bearing designs [Fig. 7(e)].

A further consideration is the choice of source-detector layout.
Sparse DOT grids (i.e., source detector separation distance >15 mm)
will give rise to systematic data quality perturbations based upon
the respective point spread function (Fig. 8). The size, shape, and
severity of artifacts in the point spread function of the observed
data will depend upon the cap design (e.g., square, triangular, rect-
angular, HD), and metrics of image quality such as localization
error and effective resolution will spatially vary in a systematic fash-
ion based upon source-detector distance and location. For example,
Chance and colleagues note that their chosen source-detector layout
resulted in elongated activations where fMRI demonstrated local-
ized activity.168 Sparse square and triangular grids will have greater
localization error and worse effective resolution than HD-DOT cap
designs149 (Fig. 8).

A crucial design detail, regardless of whether fibers or fiberless
designs are used, is to comb through the participant’s hair to gain
unimpeded access to the scalp [e.g., as in Fig. 6(c)]. Hair (and prod-
uct in hair like conditioner or hair gel) scatters light away from the
optic-head system and lowers raw data quality. With this infrastruc-
ture in place, the cap maintaining the imaging array may be attached
to the participant with hook-and-loop straps positioned to provide
rigid yet comfortable stability on the head and to conform the curva-
ture of the cap to a wide variety of head shapes and sizes. To ensure
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FIG. 7. Strategies for HD-DOT cap design and fiber management. (a) An outer layer manages fiber weight and position and directs the fibers toward an inner layer via plastic
tubing. [Reproduced with permission from Dai et al., J. Biophotonics 11, e201600267 (2017). Copyright 2017 John Wiley and Sons.] (b) A “double-halo” design supports the
weight of the 188 optical fibers while allowing moderate planar motion of the participant. This design minimizes torque on the fibers at the scalp surface which effectively
dampens motion artifact in the acquired signal. The imaging cap is attached to the head of the participant using adjustable hook-and-loop straps across the forehead and
over the top of the head. [Reproduced with permission from Eggebrecht et al., Nat. Photonics 8, 448–454 (2014). Copyright 2014 Springer Nature Publishing.] (c) An open
scaffolding design using semi-plastic strips placed along the head circumference along the midline and just above the ears. This design uses spring-loaded fibers to maintain
optimal coupling at the fiber-scalp interface. [Reproduced with permission from Koch et al., Front. Neuroenerg. 2, 12 (2010). Copyright 2010 Frontiers.] (d) Bedside HD-DOT
imaging across bilateral visual cortex in infants in the hospital neonatal ward. The soft silicone array surrounds each source and detector tip and provides a comfortable
surface on which to rest the infant’s head. Straps composed of neoprene with hook-and-loop connections secure the silicone array to the head with the bed supporting
the weight of the fibers. [Reproduced with permission from White et al., NeuroImage 59, 2529 (2012). Copyright 2012 Elsevier.] (e) A fiberless modular HD-DOT system
transmits data via a ribbon cable to a controller, significantly increasing wearability of the technology. [Reproduced with permission from Chitnis et al., Biomed. Opt. Express
7, 4275–4288 (2016). Copyright 2016 OSA Publishing.]

consistent placement of the imaging array on a given participant and
across participants, measurements of the distance between specific
fiducials on the imaging array and the head of the participant (e.g.,
the nasion, left and right tragus, and eyes) should be recorded.

C. Challenges in data quality assurance
To provide adequate coupling across the imaging array, a few

simple metrics of data fidelity can help ensure a high quality cap
fit. First, the average light level for each source and detector can be
displayed in a two-dimensional representation of the imaging array
[Fig. 3(d–ii)]. If the light level is low, or if there is significant spa-
tial variance in mean light level (more than 2 orders of magnitude),
then the associated optical element or fiber optic should be adjusted
at the head to improve coupling. The adjustment typically involves
improving either the combining through the hair and/or ensuring
the fiber/element is coupled to the scalp at a right angle. Second, ade-
quately coupled elements will reflect a set of mean light levels that

are logarithmically distributed as a function of distance, reflecting
diffusion of photons through tissue [Fig. 6(b) and Eq. (23)]. Third, if
the spread in light level at a given source-detector separation is more
than 1–2 orders of magnitude, or if the slope of the fall-off is not
approximately one order of magnitude in light level for every cen-
timeter of additional Rsd, then the cap fit may not be optimal. Third,
assuming the data are acquired at a frame rate of at least 3 Hz, the
time course of individual source-detector pair measurements with
a good signal-to-noise ratio will clearly exhibit characteristics con-
sistent with the pulse (∼1 Hz) frequency [Fig. 3(d–iii)]. The relative
magnitude of the pulse peak in a power spectral density plot is an
excellent indicator of data quality: the more noise contamination,
the lower the relative pulse peak power.

IV. VALIDATION
As is true with any technology development, external validation

of the acquired signals provides essential corroboration required
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FIG. 8. Modeling cap design and resultant simulated data quality. (a) A regular HD-DOT grid design with 24 sources and 28 detectors supported 212 source-detector
measurements using both first and second nearest neighbor distances of 13 mm and 30 mm. Sparse grid designs covering the same surface area include a square design
(7 sources, 8 detectors, 22 measurements) and a triangular design (8 sources, 14 detectors, 28 measurements) have access to only source-detector pairs separated by
30 mm. (b) A modeled point spread function for each grid design highlights the spatial irregularity of reconstructed data with the sparse grids as compared to the HD-DOT
grid. (c) Localization error (the spatial separation between the known target location and the centroid of the reconstructed voxels) demonstrates that sparse square and
triangular grids have higher localization error than HD-DOT. (d) The effective resolution was calculated as the diameter of a circle centered at each target position needed to
enclose the reconstructed response. These metrics highlight both the superior resolution and the regularity of the reconstructions of the HD array across the imaging domain.
(e) Reconstructions of extended perturbations further highlight irregularities of reconstructions using sparse grids as compared to an HD array. [Adapted with permission from
B. R. White and J. P. Culver, J. Biomed. Opt. 15, 026006 (2010). Copyright 2010 SPIE.]

for establishing that the technology delivers meaningful informa-
tion that complements existing measurement strategies. Validation
of optically-measured neurophysiological signals and the anatomi-
cal specificity of the reconstructed maps is a necessary and crucial
step toward adoption of the method beyond the optical community.
For HD-DOT, validation studies have used simulation and in vivo
direct and indirect comparisons against fMRI as a gold-standard
of functional neuroimaging. Well-understood task-based paradigms
that elicit reliable responses in sensory and motor areas provide solid
footing for cross-modal validation because the brain responses from
these tasks are more predictable and less variable across a popula-
tion than tasks designed to elicit responses in cognitive brain areas.
Task-free paradigms that leverage the spatial structure of tempo-
ral correlations of very low frequency activity within the brain (i.e.,
functional connectivity) provide a more stringent bar for valida-
tion due to increased demands of the instantaneous signal-to-noise.
Sections IV A–IV D will discuss some key validation-focused stud-
ies that have established HD-DOT as an effective and reliable neu-
roimaging tool producing cortical brain maps with comparable
precision to fMRI in both adults and infant participants.

A. Validation of HD-DOT with retinotopy paradigms
Retinotopy, so named because visual stimuli incident on the

retina map onto visual cortex in a regular and characteristic pat-
tern,169 provides a compelling strategy for optical imaging validation
for multiple reasons. First, the spatial organization of retinotopic
maps at multiple spatial scales is well known via investigation with

PET,170 fMRI,171–178 and other methods.179–183 Second, retinotopic
organization can be reliably measured within an individual.171,174,184

Third, the detailed spatial structure of the retinotopic maps vary
between individuals, providing opportunity for demonstration of
image quality at ever finer spatial scales.185 Fourth, because retino-
topic maps are in a primary sensory region of the brain, interpre-
tation of the measured responses is simpler than in regions of cor-
tex that support higher cognitive functions. Indeed, mapping visual
fields in occipital cortex was one of the earliest forms of fMRI meth-
ods validation against PET imaging.171,172,177,186–191 Following in this
tradition, several DOT studies have utilized retinotopy to estab-
lish proof of principle, validity, and reliability of the technique for
imaging human brain function in adults45,47,48,192,193 and even in
infants.166

In a seminal study in 2005, Zhang and colleagues acquired data
using simultaneously collected MRI and DOT. In response to five
blocks with alternating fixation followed by a flashing black and
white checkerboard pattern, results demonstrated bilateral visual
cortex activations in both modalities.192 In 2007, an HD-DOT sys-
tem using a closest source-detector separation distance of 13 mm
was first reported. This HD-DOT system was shown to recover
visual cortex activations in response to flickering checkerboard
wedges displayed in each quadrant of the visual field in seven
adult participants [Fig. 9(a)].45 The resultant images clearly delin-
eated four quadrants of visual cortex activation intensities corre-
sponding to visual stimuli in the upper and lower left and right
visual fields. Several years later, light models utilizing realistic
anatomy were used to reconstruct HD-DOT retinotopy data using
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FIG. 9. Validation of HD-DOT image quality using in vivo retinotopy. (a) Flickering checkerboard wedges and corresponding activations in four quadrants of the visual field
recorded in a single subject. As expected, HD-DOT reconstructs brain activations in the opposite quadrant as the visual stimulation (e.g., red: bottom right visual field
stimulation causes activation in top left visual cortex as viewed from behind the head). Contours on right denote 50% maximum of activations. [Adapted with permission from
Zeff et al., Proc. Natl. Acad. Sci. U. S. A. 104, 12169–12174 (2007). Copyright 2007 National Academy of Sciences.] (b) Rotating the flickering wedge around the field of
view extends the quadrant design to a phase encoded retinotopy design wherein the spatial location of the stimulus is encoded in the temporal phase of the response. (i) The
periodic response to the phase encoded design in a single voxel in the visual cortex of a single subject. (ii) The power spectrum of that response exhibits a strong peak at
the stimulation frequency. Mapping the phase at the stimulus frequency on the cortical surface of the participant reveals the retinotopic map in visual cortex as recorded with
HD-DOT and (separately) with fMRI. [Adapted with permission from Eggebrecht et al., NeuroImage 61, 1120–1128 (2012). Copyright 2012 Elsevier.] (c) Retinotopic methods
have also been utilized to quantitatively assess image quality of HD-DOT when using participant-specific anatomy as compared to when using atlas-derived anatomy for
the light model. Atlas-based reconstructions produce similar image quality as participant-specific models as compared to fMRI-derived maps of brain function. [Adapted with
permission from Ferradal et al., NeuroImage 85(1), 117–126 (2014). Copyright 2014 Elsevier.]

subject-specific MRI-derived anatomy [Fig. 9(b)]. This study
assessed visual cortex activity during separate HD-DOT and fMRI
sessions in five healthy adults using a phase-encoded paradigm174

of rotating and flickering checkerboard wedges. Single-subject and
group average data demonstrated that fMRI and HD-DOT retino-
topic mapping boasted a high degree of correspondence in visual
cortex:47 these methods recovered activations with an average local-
ization error of 4.4 mm relative to subject-matched fMRI. Addi-
tional studies used retinotopy based paradigms to demonstrate atlas-
based light models yield similar results to subject-specific anatomical
models as compared with fMRI-based retinotopy mapping (with
an average localization error of 6.6 mm relative to subject-matched
fMRI) [Fig. 9(c)].52 Using atlas-based light models (such as with the
MNI152 and Colin27 atlases) is advantageous for DOT imaging as it
alleviates the necessity of acquiring a structural MRI image for each
subject when there is adequate spatial agreement between the atlas
and the subject/population.87

B. Validation of HD-DOT with motor paradigms
The sensorimotor cortex provides an additional compelling

location for simple and reliable validation of neuroimaging tech-
nology. The spatial organization of anatomical and functional areas

along the motor cortex correspond to specific areas of the body,
much like areas of visual cortex map to areas of the retina. Haber-
mehl and colleagues examined HD-DOT activations within motor
and somatomotor cortex in eight adults using vibrotactile stimu-
lation of the thumb and pinky finger.58 Subject-specific modeling
was used to tomographically map HbR motor activity onto the sur-
face for each subject (Fig. 10). Distinct activations to thumb and
pinky fingers were observed in five out of eight subjects using both
HD-DOT and nonconcurrent fMRI. The localization error between
HD-DOT and fMRI motor activations was estimated at approxi-
mately 10 mm. More recently, a fiberless HD-DOT imaging system
demonstrated feasibility by reporting motor cortex activity observed
in five adult subjects.160 Subjects were asked to touch the thumb to
pointer finger of the dominant hand in 20 runs of 15–second blocks.
Individual and group averaged oxygenated and deoxygenated acti-
vations were tomographically reconstructed on the surface (Fig. 11).
Fiberless systems provide an exciting and compelling alternative to
fiber-based HD-DOT. On-head optoelectronics provide a significant
set of challenges and are discussed in more detail elsewhere.165

C. Validation of HD-DOT with language paradigms
Brain areas associated with perception and generation of lan-

guage are distributed throughout the cortex, including regions of
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FIG. 10. Validation of HD-DOT image quality using in vivo motor activations. (a)
Vibrotactile stimulation was administered to the thumb and pinky finger. (b) A
4 cm grid of 30 source/detector fibers was placed over left motor cortex. (c) Loca-
tion of the region used for light modeling within the participant’s head. (d) Finite
element mesh model covering the field of view of interest (blue mesh) and the
locations of the optical fibers (red dots) were defined individually for each sub-
ject. (e) Reconstructed thumb (pink) and pinky (blue) activations in motor cortex
for each individual subject as assessed with HD-DOT or (separate) fMRI. [Repro-
duced with permission from Habermehl et al., NeuroImage 59, 3201–3211 (2012).
Copyright 2012 Elsevier.]

temporal, parietal, and prefrontal cortex.194–196 Due to this extended
and differentiated organization, studies validating the efficacy of
HD-DOT for investigating language-based task paradigms have
required a field of view that extended beyond that of primary sen-
sory and motor regions. In order to validate the largest-to-date field
of view HD-DOT system,46 the authors selected a hierarchical lan-
guage paradigm first established in a seminal PET study that mapped
the spatial topology of single word processing in the brain.5 During
the hierarchical language paradigm, several different experimental
probes of language function were utilized. In the first task, par-
ticipants listened to a prerecorded list of single nouns. Each run
consisted of six blocks within which nouns were presented one/s
for 15 s followed by 15 s of silence (hearing words). Next, partici-
pants silently read a series of simple nouns displayed one at a time
in the same block design on a screen (reading words). The third

experimental run required participants to imagine speaking each
word out loud (imagined speaking). Finally, participants were asked
to silently generate associated verbs in response to each noun pre-
sented on screen (covert verb generation). Activation maps corre-
sponding to each of these aspects of language were recorded during a
HD-DOT imaging session followed by an fMRI session on a separate
day. Strong agreement between HD-DOT and fMRI was apparent
with robust contrast-to-noise activations in auditory cortex, visual
cortex, superior temporal lobe, and dorsolateral prefrontal cortex
apparent in both modalities [Fig. 12(a)]. This study highlighted the
spatial correspondence of HD-DOT and fMRI throughout a spa-
tially extended field of view that encompassed both sensory areas,
known for exhibiting large signal to noise activations, as well as
cognitive and association areas, known in the fMRI literature for
exhibiting relatively smaller activation volumes and contrast lev-
els. Group maps of activations detected with HD-DOT and fMRI
showed strong concordance with responses to the simple percep-
tual tasks of hearing words and reading words in auditory and visual
regions, respectively. The more cognitive tasks of imagined speaking
the presented word or generating a novel verb revealed subtle dif-
ferences beyond the agreement within motor and prefrontal areas,
respectively, in the group maps between HD-DOT and fMRI. These
differences are seen in cognitive regions within temporal, extras-
triate, and parietal areas known to be associated with aspects of
language processing that generally present with low SNR relative
to sensory regions in response to these tasks. These differences are
expected given the low number of subjects (N = 5) in this study and
the level of intersession variability of cognitive language tasks for a
given participant.

Additional studies of language processing with the HD-DOT
large field of view system have investigated brain function underly-
ing processing of syntactically complex and simple sentences. While
syntactically complex and simple sentences both activated similar
regions of cortex, including dorsolateral prefrontal cortex and audi-
tory cortex, complex sentences elicited greater activations in pri-
mary auditory, ventrolateral prefrontal cortex, and temporal cortex
than syntactically simple sentences [Fig. 12(b)].33 These results were

FIG. 11. A wearable modular and fiberless on-head HD-DOT system design. (a) Each DOT module consists of four photodiode detectors (red) and two LED sources (red).
Each detector is attached to the analog input of a charge-to-digital converter (DDC). (b) Normalized array sensitivity at 770 nm displayed on a cortical mesh of a single
subject. (c) A motor task consisting of touching the thumb to finger was used to generate motor cortex activity in six adult participants (four shown). (d) Group average
HD-DOT activations demonstrate oxygenated (HbO, red) and deoxygenated (HbR, blue) activations in motor cortex. [Adapted with permission from Chitnis et al., Biomed.
Opt. Express 7, 4275–4288 (2016). Copyright 2016 OSA Publishing.]
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FIG. 12. Validation of HD-DOT image quality across an extended field of view using
language paradigms. (a) Language-related contrast-to-noise maps in a group of
5 adults. Task-based language paradigms included passive hearing words, silent
reading of words presented on a screen, imagining speaking of the visually pre-
sented words, and covert generation of verbs associated with nouns presented on
the screen. HD-DOT (top row) and fMRI (middle row) demonstrate a strong degree
of overlap (bottom row) across the extended field of view. [Adapted with permis-
sion from Eggebrecht et al., Nat. Photonics 8, 448–454 (2014). Copyright 2014
Springer Nature Publishing.] (b) Complex sentences (containing object-relative
clauses) and simple sentences (subject-relative clauses) were utilized to demon-
strate strong left lateralized temporal and dorsolateral prefrontal activations when
compared to noise-vocoded sentences. Brain areas associated with processing of
semantic complexity of the sentences were found in left-lateralized regions of tem-
poral, parietal, and dorsolateral prefrontal cortex. [Adapted with permission from
Hassanpour et al., NeuroImage 117, 319–326 (2015). Copyright 2015 Elsevier.]

largely consistent with prior fMRI and PET linguistic research and
are suggestive of the validity and spatial specificity of task-based
HD-DOT measured activations.

D. Resting state functional connectivity HD-DOT
While task-based studies were particularly useful for validating

event-elicited brain activations between HD-DOT and fMRI, task-
free neuroimaging experimental methods have also been used to
validate HD-DOT against fMRI. An increasingly common method
in the fMRI literature is the use of resting state-functional MRI
(rs-fMRI), a technique that can be used to assess functional con-
nectivity within the brain in the absence of a stimulus. These rest-
ing state methods are ideal for situations in which a participant
may be unable to engage in a traditional task-based block-design
or event-related neuroimaging paradigm, such as infants or those
who are asleep, anesthetized, or cognitively impaired. Functional
connectivity can be inferred by assessing temporal correlations in
low frequency fluctuations of the BOLD signal (in the range of
0.008–0.09 Hz).161,197,198 Importantly, rs-fMRI data can be used to
identify spatially-distributed brain networks comprising regions of
the brain known to be activated by task, including primary corti-
cal regions such as visual and motor cortex, as well as higher order

cortical areas supporting cognitive control, attention, and execu-
tive functions.199–202 The composition of these resting state networks
has been well-characterized using fMRI in healthy adults and older
pediatric populations1–3,6,7,13,200,203–209 and has also been increasingly
utilized in infants.210–217

Validation of resting state functional connectivity methods for
HD-DOT, (i.e., functional connectivity DOT; fcDOT) were first
demonstrated in healthy adults.60 This seminal paper established
that fcDOT maps were reproducible in participants across days and
that bilateral maps of strong correlations within (and not between)
visual and motor regions were replicated in fMRI in those same
participants. More recently, subject-specific light modeling and an
expanded field of view broadened the reach of fcDOT methods to
map not just sensory or motor networks, but also spatially dis-
tributed cognitive networks including cortical aspects of the dorsal
attention network, fronto-parietal control network, and the default
mode network [Fig. 13(a)].46 Group level analyses demonstrated
similarities in the topology of these brain networks between fcDOT
and subject-matched rs-fMRI. This type of analysis has also been
extended to imaging functional connectivity in neonates [Fig. 13(b)].
Patterns of bilateral visual, middle temporal, and auditory cortex
connectivity were observed using both HD-DOT and fMRI.25 Taken
together, these validation studies suggest HD-DOT is capable of
measuring both task-based activations and functional connectivity

FIG. 13. Validation of HD-DOT image quality using resting state functional con-
nectivity and fMRI. (a) Functional connectivity maps generated from eight adult
participants using seed regions of interest in the putative visual network, audi-
tory network, default mode network (DMN), dorsal attention network (DAN), and
frontoparietal control network (FPC). [Adapted with permission from Eggebrecht
et al., Nat. Photonics 8, 448–454 (2014). Copyright 2014 Springer Nature Publish-
ing.] (b) Functional connectivity maps generated from 14 term-born infants within
the visual, middle temporal, and auditory cortex demonstrate strong spatial agree-
ment between HD-DOT and separately recorded fMRI. [Adapted with permission
from Ferradal et al., Cereb. Cortex 26, 1558–1568 (2016). Copyright 2016 Oxford
University Press.]
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in human participants with comparable spatial specificity to that
observed with fMRI.

V. DOT APPLICATIONS IN HUMAN
CLINICAL POPULATIONS

We will finish this review with a brief overview highlighting
studies that have applied DOT and HD-DOT technology to clinical
populations in environments beyond the reach of traditional meth-
ods such as fMRI. Imaging infants in the neonatal intensive care
unit (NICU) with fMRI presents significant challenges for moni-
toring brain health. Neonates hospitalized for extended periods in
the neonatal intensive care unit (NICU) may not be stable enough
to move to an fMRI machine. For example, the most profoundly
infirmed neonates may need mechanical ventilators, continuous
positive airway pressure, or extracorporeal membrane oxygenation.
Moving these infants for fMRI neuroimaging presents significant
challenges for the health and safety of the patient. Thus, HD-DOT
methods provide a compelling surrogate to fMRI and afford an
opportunity to image cortical brain activity at the bedside. To-date,
several studies have used DOT to assess brain activity and func-
tional connectivity within preterm infants at a range of gestational
ages recovering in the NICU. In this section, we highlight the use
of optical methods with a focus on DOT in several case reports
of infants with brain injuries including stroke, intraventricular

hemorrhage (IVH), and hypoxic ischemic encephalopathy (HIE).
Finally, we summarize combined EEG-DOT systems used to assess
neonatal seizure activity and task-based activations in adult patients
with epilepsy.

In the late 1990s, a groundbreaking paper reported the
first DOT activations in an infant born extremely preterm (<27
weeks).168 These authors were able to measure motor activations
while manually stimulating the left and right fingers. More recently,
Hintz and colleagues similarly demonstrated motor cortex activity to
passive arm movements in infants born moderately preterm (32–33
weeks gestational age).218 These early studies demonstrated the
initial feasibility of DOT within the NICU.

While some studies rely on passive arm movements and tactile
stimulation,219 other studies make use of passive brain activity while
the infant is resting. Specifically, a single high-quality dataset can be
acquired in minutes, and data can be collected from subjects swad-
dled, resting quietly, sleeping, and under anesthesia or morphine
without requirement of task performance or attention to stimulus.
White and colleagues acquired fcDOT on three term-born infants
and four preterm-born infants using a HD-DOT cap covering left
and right occipital lobes.26 Infants were imaged lying on their backs,
with the weight of the fiber optics rested on the bed. One of the
preterm infants exhibited a large left occipital hemorrhage, apparent
on a T2-weighted MRI. Using fcDOT, bilateral functional connectiv-
ity maps were apparent within visual cortex in the healthy term-born

FIG. 14. Application of DOT in studies of neonatal brain injury. (a) Maps of resting state functional connectivity using HD-DOT (fcDOT). A seed placed in left or right visual
cortex reveals strong temporal correlations throughout contralateral visual cortex in term born neonates. Infants born preterm have weaker bilateral connectivity within the
visual cortex. Bilateral visual network connectivity was completely absent in a preterm infant with a unilateral left occipital stroke. [Reproduced with permission from White
et al., NeuroImage 59, 2529–2538 (2012). Copyright 2012 Elsevier.] (b) Whole brain reconstruction of time domain optical data acquired from a preterm neonate with left-sided
intraventricular hemorrhage (IVH). Regional blood volume (i), regional oxygen saturation (ii), and cranial ultrasound demonstrate disruptions in oxygenation and hemoglobin
concentration in the region near the hemorrhagic parenchymal infarct (iii). [Reproduced with permission from Austin et al., NeuroImage 31, 1426–1433 (2006). Copyright 2006
Elsevier.] (c) Whole brain DOT cortical reconstruction corresponding to the peak total hemoglobin concentrations following 4–6 s long EEG burst activity on a background of
a burst suppressed EEG in an infant with grade III hypoxic ischemic encephalopathy (HIE). [Adapted with permission from Chalia et al., Neurophotonics 3, 031408 (2016).
Copyright 2016 SPIE.]
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infants [Fig. 14(a)]. This same pattern of bilateral visual cortex con-
nectivity, although weaker, was also present in preterm-born sub-
jects. However, bilateral visual cortex connectivity was absent in the
preterm infant with left occipital hemorrhagic stroke.26 Similarly,
researchers have recently demonstrated reduced interhemispheric
connectivity in four infants following perinatal stroke as compared
to four healthy infants.220

Neonatal brain injury, including the study of acute injury, such
as IVH, is a particularly interesting application of DOT within
the NICU. IVH typically occurs within the first 72 h following
birth and is one of the leading forms of preterm brain injury.221

Austin and colleagues used a time-resolved DOT system known as
MONSTIR (Multichannel Optoelectronic Near-infrared System for

Time-resolved Image Reconstruction)222 to scan 14 preterm infants
in the NICU, several of whom were diagnosed with IVH. DOT
caps were constructed to cover the entire cortex, and each cap was
custom-built to the head shape of the infant. Due to the long data
acquisition time of this system, fcDOT was not performed. Instead,
the authors generated mean photon flight times compared to a phan-
tom reference volume. Using this analysis method, one preterm
infant demonstrated increased regional blood volume and oxygen
saturation [Fig. 14(b)] corresponding to IVH in the left hemisphere,
visible on ultrasound.223 More recently, using a frequency domain
DOT system (ISS Imagent™, Champaign, Illinois) recording at a
38.5 Hz frame rate with an irregular but high density cap config-
uration, researchers demonstrated decreased pulse rise time in ten

FIG. 15. Application of DOT in studies of seizures in infants and adults. (a) Seizure activity in newborn infant with hypoxic ischemic encephalopathy (HIE). (i) Bipolar
EEG channel timetraces demonstrate noticeable high frequency periods across most channels. (ii) DOT optical intensity changes in several source-detector pair amplitude
increases mirror the high frequency periods observed in EEG. (b) Oxygenated (HbO), deoxygenated (HbR) and total hemoglobin (HbT) timetraces corresponding to spatially
averaged brain activity following a seizure event at time point zero. (c) Maps of HbT at time points shown in B. [Reproduced with permission from Singh et al., NeuroImage:
Clin. 5, 256–265 (2014). Copyright 2014 Elsevier.] (d) Finger tapping activity within the corresponding reconstructed activations in a healthy adult subject and (e) a patient
with epilepsy. [Reproduced with permission from Dai et al., J. Biophotonics 11, e201600267 (2017). Copyright 2017 John Wiley and Sons.]

Rev. Sci. Instrum. 90, 051101 (2019); doi: 10.1063/1.5086809 90, 051101-19

© Author(s) 2019

https://scitation.org/journal/rsi


Review of
Scientific Instruments REVIEW scitation.org/journal/rsi

preterm infants with IVH as compared to 20 preterm infants with-
out IVH at various stages of recovery in the NICU up through
term equivalent age.157 These results suggest imaging infants with
DOT either during this acute period of brain injury or later during
recovery in the NICU may provide insights into neural disruptions
leading to subsequent neurodevelopmental impairment later in life.

Neonatal HIE has also been investigated using DOT. HIE
occurs as a result of oxygen deprivation from fetal trauma either dur-
ing gestation or during birth, and can result in long-term develop-
mental complications including cerebral palsy, epilepsy, and sensory
impairments.224–227 Infants with HIE provide a particularly com-
pelling case for the use of DOT imaging, as the standard of care for
infants with HIE is therapeutic hypothermia treatment for 72 h fol-
lowing birth. This therapeutic hypothermia treatment cools the body
temperature of the infants, mitigating further brain damage result-
ing from the hypoxic event. However, the equipment used to cool
the infant’s body temperature is not MRI compatible. Therefore,
portable brain monitoring and imaging modalities such as EEG and
DOT provide crucial clinical information about brain function dur-
ing this treatment period. Chalia and colleagues used DOT to study
hemodynamics associated with high-frequency bursting EEG activ-
ity, typically signifying pathological activity, in a group of term-born
infants with HIE during the warming period following therapeutic
hypothermia treatment in the NICU. Infants presented with seizures
in the first 48 h of life and were scanned with combined EEG-DOT
within seven days of birth. Across infants, oxygenated hemoglobin
initially declined during the EEG bursts, and peaked 10–12 s after the
bust onset.27 Though this study did not use a high density arrange-
ment of measurements, this study provides a powerful example of
the clinical application of concurrent EEG and DOT methods and
illustrates the opportunity for advanced optical methods to inform
clinical care [Fig. 14(c)].

While seizure activity is typically measured using EEG/MEG,
modalities sensitive to changes in electrical/magnetic fields, recently
researchers have utilized DOT to investigate BOLD correlates of
seizure activity. Seizures represent a major medical challenge for
treating neonatal infants with HIE, and seizures are associated with
poorer neurodevelopmental outcome. Singh and colleagues exam-
ined an infant with severe HIE during a 60 min period of passive rest
following the warming period after 72 h of therapeutic hypother-
mia.28 The authors observed seven discrete periods of generalized
whole-scalp EEG hyperactivity indicating seizure events [Fig. 15(a)].
Concurrent DOT imaging revealed HBT amplitude increases fol-
lowing each seizure event [Fig. 15(a)]. Averaging DOT activity
across all channels following one of the seizure events revealed
HbO, HbR, and HBT peak amplitude 15 s following seizure events
[Fig. 15(b)]. The authors also observed spatial variation in the local-
ization of activity prior to, during, and following the seizure events
[Fig. 15(c)]. This study suggests the use of DOT in the clinic is a
useful tool in addition to standard EEG bedside monitoring.

Limited prior work has imaged human adult clinical popula-
tions using DOT or HD-DOT. One prior study imaged three healthy
adults and three adults diagnosed with temporal lobe epilepsy as
a proof of concept.158 While seizure activity was not recorded,
in this study, the authors demonstrate DOT activation differences
in adults with and without epilepsy during a finger tapping task.
Changes in HbT amplitude were observed in motor cortex of healthy
adults [Fig. 15(d)], while adults with epilepsy showed no signs of

hemodynamic response [Fig. 15(e)]. The authors suggest this lack
of hemodynamic response in the motor cortex of epilepsy patients
results from “the epileptic lesion existing in the brain of patients.”
The authors note that the patients with epilepsy did not suffer from
any clinical motor impairments which might otherwise explain their
apparent lack of motor activity.158

Cumulatively, these papers illustrate some unique opportuni-
ties for applying advanced optical methods in the clinic and poten-
tially in basic neuroscience. Future adult and infant studies would
benefit from improved reliability and image quality afforded by uti-
lizing whole-head HD-DOT imaging. For example, the silent and
minimally constraining environment of HD-DOT may open the
doors to neuroimaging studies on neural correlates of meditation
and pharmacologically altered consciousness such as brought about
via sedation, anesthesia, or psychoactive medications increasingly
used to treat depression, post-traumatic stress disorder, or other
conditions. Additionally, due to the lack of contraindications for
implanted metal, HD-DOT may be used on studies involving par-
ticipants with neural prosthetics such as deep brain stimulators and
cochlear implants.46

VI. CONCLUSIONS
In this review, we have focused on the physical principles

underlying optical neuroimaging in humans, and the challenges
of design and implementation of high density arrays. We have
highlighted several studies that have demonstrated strong valida-
tion of the anatomical specificity and reliability of the technology.
Finally, we summarized papers highlighting the unique potential for
HD-DOT methods to profoundly impact clinical care.

Some limitations of HD-DOT should be discussed. The sensi-
tivity of HD-DOT degrades with depth, as with all optical methods
and validated imaging with HD-DOT beyond ∼15–20 mm from the
surface has yet to be presented. The most robust strategy for over-
coming that degradation is to increase the number of measurements
at longer distances. However, as discussed above, as the source-
detector separation increases linearly, the light level at the detec-
tor falls off exponentially. As such, significant advances in deeper
imaging will most likely come about due to advances in detection
and ADC technology with lower noise floors and wider dynamic
ranges potentially along with advances in longer wavelength sources
and detectors. Even with those potential advances, HD-DOT, unlike
methods like fMRI, is limited to imaging the superficial cortex.
Therefore, HD-DOT cannot access deep cortical structures such as
the insula and operculum or deep subcortical brain structures such
as the striatum, amygdala, hippocampus, or the thalamus.46,47,146

While this limitation is potentially a problem in mapping of func-
tional connectivity networks, known functional connectivity net-
works have nodes in the superficial cortex.1,46,228 Furthermore, the
functional connectivity structure of the brain has been shown to
exhibit network-like properties, where a lesion within one area of the
brain will often have effects that can be measured at spatially sepa-
rated loci, often including those in superficial cortex.229 Even though
HD-DOT is constrained to imaging brain activity in superficial cor-
tical areas, disruptions throughout the functional brain network may
be within reach.

Recent advances in HD-DOT systems make this modality
a viable alternative to fMRI that can provide comparable spatial
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information about cerebral cortex activity and connectivity, with
the added advantage of being portable (e.g., bedside data collec-
tion in populations that cannot be taken to a scanner). Multi-
ple opportunities remain in the ongoing development of HD-DOT
strategies for mapping human brain function. As discussed above,
increasing the density of overlapping measurements has a direct
positive impact on reconstructed image quality. One approach to
increasing the density of overlapping measurements beyond current
designs would be to lower the source-detector separation distances
while maintaining the regular grid spacing. Though straight for-
ward in design, this strategy leads to nontrivial challenges in cap
design, cap fitting, source-detector encoding and decoding strate-
gies, and the management of the hair of participants. An alternative
approach to increasing the number of measurements afforded by
a given arrangement of sources and detectors would be to use fre-
quency domain or time domain strategies in a high density arrange-
ment. The added phase- (or time-gate) based measurements com-
pliment the intensity-based measurements and could provide fur-
ther improvements in image resolution, localization accuracy, and
quantification. Fiberless designs that place source, detector, and dig-
itization components on the head have the potential to dramatically
increase wearability and portability. All of these designs will also
require further advancements in reliable and efficient anatomical
co-registration methods, such as electromagnetic localization of the
array and head fiducials or surface capture based on photometric
strategies. Additionally, the increasing and large number of mea-
surements required by HD-DOT arrays will require further devel-
opments in data fidelity assurance and motion-artifact detection and
processing.
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